
h

ELECTRONIC PUBLISHING, VOL . 1(1), 3–17 (APRIL 1988)

Tools for printing indexes

JON L. BENTLEY AND BRIAN W. KERNIGHAN

AT & T Bell Laboratories
600 Mountain Avenue
Murray Hill
NJ 07974
USA

SUMMARY

This paper describes a set of programs for processing and printing the index for a book or a
manual. The input consists of lines containing index terms and page numbers. The programs
collect multiple occurrences of the same terms, compress runs of page numbers, create
permutations (e.g., ‘index, book’ from ‘book index’), and sort them into proper alphabetic
order. The programs can cope with embedded formatting commands (size and font changes,
etc.), with roman numeral page numbers, and with see terms. The programs do not help with
the original creation of index terms.

The implementation runs on the UNIX operating system. It uses a long pipeline of short
awk programs rather than a single program in a conventional language. This structure
makes the programs easy to adapt or augment to meet special requirements that arise in
different indexing styles. The programs were intended to be used with troff , but can be used
with a formatter like TEX with minor changes.

An appendix contains a complete listing of the programs, which total about 200 lines.

KEY WORDS indexing awk Unix troff document preparation

MAKING AN INDEX

There are two major tasks to making an index for a book or manual. The first is deciding
on the proper indexing terms, so that users of the index can readily find what they are
looking for. This is hard intellectual work if done well, and no mechanical aid is likely to
do more than help with a rough first draft. The authors of this paper have between them
indexed nearly a dozen books and as many programmer manuals, and have never found a
substitute for a lot of thought. (Reference[1] contains an excellent discussion of the
entire process of producing an index by traditional means.)

The second task is, given a set of terms and page numbers, to produce and print a
properly sorted and formatted index. This includes collecting multiple instances of an
index item into a single list of page numbers:

book index 1, 17, 18, 19, 25, 26

permuting index terms:

index, book 1, 17, 18, 19, 25, 26

compressing runs of adjacent page numbers:

book index 1, 17–19, 25–26

0894–3982/88/010003–15$07.50 Received 15 October 1987
 1988 by John Wiley & Sons, Ltd. Revised 25 December 1987

© 1998 by University of Nottingham.

h

4 J. L. BENTLEY AND B. W. KERNIGHAN

sorting correctly in the face of strange characters and formatting commands:

ps -a 34, 91
ps command 34
.ps command, troff 301
PS1 shell variable 36, 82

and a host of similar details.
This second task—mechanical but remarkably time-consuming if not mechanized—is

addressed by the family of programs described here.
The precise task to be performed depends on the style of the index. Some issues are

cosmetic: for example, which of the following styles is desired?

index term, ii, iii, 26.
index term ii, iii, 26
index term ii–iii, 26

Other issues are deeper. This example incorporates a glossary, allows hierarchical
entries, and includes see and see also cross-references:

Insertion: adding a new element, 168-223.
into arrays, 169.
into binary trees, see Trees.
into linked lists, 200–215, see also Sequences.

How should a program deal with such a multitude of choices? One way is to build a
number of options into a large program, controlled perhaps by various flags. This
approach solves many problems, but it requires a great deal of complex code, since the
various options have subtle interactions. It is also difficult to modify such code if one
wishes to cater to problems not addressed in the original.

We have taken an alternate approach to the problem of proliferating options. Our
package provides basic services—permuting terms, compressing runs, sorting
correctly—but neglects formatting options, glossary definitions, hierarchies, and cross
references. The simple package is sufficient for producing simple indexes. Users with
more complex needs must modify the programs; the tools are organized as a long
pipeline of short awk programs to make this easy.

The programs run on the UNIX operating system. They are intended for use with the
troff formatter, but can be readily adapted to another formatter, such as TEX. The reader
is assumed to have some familiarity with UNIX.

DESIGN CONSIDERATIONS

The first step faced by someone making an index is to prepare a list of index terms and
page numbers. This can be done completely by hand if the document is guaranteed to be
in its final form, by transcribing the terms and page numbers into a file. Another
possibility is to make a list of index terms by scanning the document mechanically. This
is difficult; no successful automatic indexing programs are known to the authors.

The most satisfactory way to make a list seems to be to include, in the machine-
readable form of a document, commands that cause the index terms and their computed
page numbers to be emitted when the document is formatted. For example, with the troff

h

TOOLS FOR PRINTING INDEXES 5

formatter, one defines a macro named .ix, and inserts a macro call for each phrase to be
indexed:

This paper describes a set of programs for processing
and printing the index for a book
.ix book index
or a manual. The input is ...

With the LATEX package of TEX macros[2], one would say instead:

This paper describes a set of programs for processing
and printing the index for a book\index{book index}
or a manual. The input is ...

As the document is formatted, the index output is captured, then processed by the
indexing programs to create sorted data ready to be formatted. The index is printed by a
subsequent execution of the formatter.

Although adding terms to a document is not difficult, it is important to make it as easy
as possible, since there might easily be half a dozen terms on every page. Thus
operations like creating permutations of terms should be automatic, and any control
information should be compact. In our system, a small language is used in index terms to
control phrase permutation, font changes, and sorting order. The most important criteria
for this language have been simplicity and conciseness.

The simplest form of an indexing entry is:

.ix sorting a book index

which, if it occurs on page 97, will be output as:

sorting a book index tab 97

Permutations are generated automatically; this phrase will subsequently be converted into
four entries by rotating it around each blank:

sorting a book index 97
a book index, sorting 97
book index, sorting a 97
index, sorting a book 97

There must be a way to control the automatic rotation so that rotations are generated
only as desired. The simplest and most compact notation is to use one character that will
sort and print as a blank but still prevent rotation. We chose the character ˜ for this
function:

.ix sorting˜a book˜index

will eventually produce:

book index, sorting a 97
sorting a book index 97

If there are multiple occurrences of an indexing phrase on adjacent pages, they may be
collected and merged to appear as, for example, 97, 98, 108–110. The specific choice
(combining three or more consecutive pages but not two, for example) is an instance of
an option that different users will want to control. Rather than providing flags or

h

6 J. L. BENTLEY AND B. W. KERNIGHAN

parameters for control, such variations are obtained by making (generally trivial)
modifications to the programs. Our programs combine a sequence of consecutive page
numbers into a hyphenated pair, but variations such as combining only sequences of
length three or more are obtained by changing one line in one function
(printoldrange in the program range.collapse).

Not all page numbers are arabic. Books use Roman page numbers for front matter;
numbers in lower case roman numerals (i, ii, iii, ...) are generally sorted before arabic
page numbers. Again, rather than writing code to take care of a family of possibilities,
we have isolated the processing of roman numerals in two short programs (deroman
and reroman) which can be adapted to handle alphabetic page numbers like A-1 as
well.

Our indices have dealt largely with programming topics, where typographic
convention is to use fonts like monospace and italic for keywords, variables, program
names, and the like. When such terms are to appear in indices, special care must be
taken to have them sorted properly. The sheer number of such terms also mandates a
concise input. (The index to Reference[3] has 1015 index terms, of which 460 involve a
font change.) Bare formatting requests are too bulky in troff and not much better in TEX.
Accordingly the language provides two abbreviations for font changes: a part of a term
enclosed in [] is printed in monospace and a part enclosed in {} is printed in italics.
These choices are of course arbitrary, and easy to change or drop entirely.

As soon as such conventions are used, then there has to be a way to include a literal
occurrence of a metacharacter like ˜ or [in an index term. We chose to use the single
character % as the quoting character, since it occurs infrequently, but again the specific
character is easy to change.

These three examples illustrate the use of font change commands and quoting:

.ix [pr]˜[-]{n} command

.ix [%[ˆ]...[%]] regular˜expression

.ix [printf] [%%d] specification

These will appear in the final index as

%d specification, printf
[ˆ...] regular expression
command, pr -n
pr -n command
printf %d specification
regular expression, [ˆ...]
specification, printf %d

Sorting is normally performed with the index term as the sort key. The control
commands listed above are removed from the sort key so they do not affect the order of
sorting, as are troff font changes like \f(CW and \fI and size changes like \s8 and
\s-3.

Some terms are so complicated or special that they cannot be sorted directly. The
most typical examples involve embedded formatting commands, such as the troff string
T\v’.17m’\h’-.12m’E\h’-.12m’\v’-.17m’X which prints as TEX. To deal
with this, the control language provides for specification of an explicit sort key. The sort
order may be controlled by adding a sort key to an index term, with %key:

h

TOOLS FOR PRINTING INDEXES 7

.ix any string %key explicit sort key

as in:

.ix T\v’.17m’\h’-.12m’E\h’-.12m’\v’-.17m’X %key TEX

This mechanism handles many situations, but not everything. For instance, where do
operators like + or ** sort? What about numeric values like 68000? Our program
arranges that non-alphanumerics sort first, then numbers, then text, but it is a trivial
change to have special characters ignored during sorting.

An entry like ‘large subject 19-35’, to indicate a range of pages, is specified with two
special .ix entries, %begin and %end:

.ix %begin large subject .. on the first page

.ix %end large subject .. on the last page

To summarize the language that controls formatting and sorting of indexing terms:

˜ prints as blank, but causes no rotations
[...] will print ... in monospace font
{...} will print ... in italics
%˜ literal ˜
%% literal %
%e printable troff escape character \
%[, %] literal [,]
%{, %} literal {, }
%key explicit sort key follows
%begin start a range of page numbers
%end end a range

If any character not mentioned above follows the escape character %, it is printed as that
literal character.

There are still many features that might be desirable—see and see also references,
hierarchical terms, and the like. A later section discusses the addition of a see cross-
reference facility, and suggests how other features might be added.

IMPLEMENTATION

The indexer consists of a set of small awk programs, intentionally kept separate for easy
modification. (The appendix contains a complete listing of all of the programs.) For
example, roman numeral page numbers are processed by deroman and reroman.
These programs can only count up to xxx , however, so a change is needed to count
beyond 30. On the other hand, if there are no roman-numeral pages, deroman and
reroman are unnecessary.

The basic strategy is to sort once to bring together all occurrences of identical index
terms so as to combine their page numbers. Preprocessing is done first to deal with
roman numeral pages and with any %begin/%end entries. After sorting, roman
numerals are restored and runs of page numbers are combined.

The next step is to generate rotated entries; each generated term of a group carries the
same list of page numbers.

The next step is to sort the terms into final order. Correct sorting in the face of bizarre

h

8 J. L. BENTLEY AND B. W. KERNIGHAN

font controls and the like is achieved by prefixing a sort key to each line such that sorting
on that key creates the proper order; the %key command allows for overriding of the
default sort key.

The final step is to expand font change commands and ˜’s. This step also inserts a
troff macro call before each entry and before the first entry for each letter of the alphabet.
The definitions of these macros (in the file index.head) control the format of index
terms in the printed version—point size and leading, number of columns, and the like.

The whole process is controlled by a shell file make.index, which produces the
body of the index file:

make.index ix.raw ... >index.body

The resulting body is typeset into an index in a subsequent step. Using troff, for instance:

troff -ms index.head index.body >index.out

The appendix contains a sample index.head file.
The specific programs in make.index are, in order,

doclean strip excess spaces, remove any non-index lines
deroman map roman numerals to arabic
range.prep prepare to sort (handle %begin/%end)
range.sort sort by string then page number
range.collapse resolve %begin/%end and merge runs of page numbers
reroman put arabic numerals back into roman
num.collapse put many number pairs onto one line
rotate make rotated copies of each line
gen.key generate a sort key, if one wasn’t provided
final.sort sort using the key
format do font and size changes, etc.

The awk programs rely on features in the awk interpreter released in mid-1985[3].
The ‘pipeline’ actually uses temporary files to connect the stages (since some systems
have a small limit on the number of programs in a pipeline and the intermediate files are
also useful for debugging), and deletes the files at the end.

BELLS AND WHISTLES

Our programs produce a basic index. Additional features are built by adding to or
adapting them. To illustrate the process, we consider a simple addition: ‘see’ references
of the form:

secondary term see primary term

(The examples in the introduction also illustrate a see also reference to follow a list of
page numbers; we shall leave that as an exercise.) The see references must be placed in
the file see.terms in the format:

secondary term tab primary term

The general strategy is to have an awk program massage that file into a suitable format,
then merge it into the existing pipeline.

Here are the implementation details. The make.index command is replaced by:

h

TOOLS FOR PRINTING INDEXES 9

doclean ix.raw | deroman | range.prep | range.sort |
range.collapse | reroman | num.collapse |
rotate | gen.key | final.sort >junk.regular

sort see.terms | see.prep >junk.see
sort -mfd junk.see junk.regular | format >index.body

The see terms are sorted, processed by see.prep, then merged into the larger file by
sort’s -m option. The program see.prep requires two lines of awk:

awk ’ # see.prep
BEGIN { FS = "\t" }

{ print $1 "\t" $1 "\t\\fIsee\\fP " $2 }
’ $*

This program uses the secondary term as the sort key and as the term itself; it puts ‘see
primary term’ in the third field (which is normally occupied by page numbers). This
assumes that the terms contain no formatting commands; if they do, they must be piped
through gen.key as well.

The most obvious missing piece is hierarchical indexes, which can be arbitrarily
complex:

book
composition 23
indexing 45–54
automatic 50
manual 48

production 67

Our tools do not supply hierarchies because the indexes in our books don’t use them (or
vice versa). Rather, we achieve a similar effect by careful use of rotation of phrases:

search 1–10, 12–14, 140–148
search, binary 12–13, 16, 18
search, hash 90, 121, 142–143, 145–146
search, sequential 12, 18, 46

The next easiest step is a two-level hierarchy, in which the primary and secondary
keys are explicitly identified in the input, perhaps as:

.ix primary term %, secondary term

(More than two levels is hard and not too useful; deducing primary and secondary keys
from word strings is a hit-and-miss operation.) Implementation requires changing
format and the index.head file, and writing a new macro for secondary terms.

The programs do not deal directly with complicated material like mathematics in index
terms. As it stands, these can be handled best by explicit sort keys, which is probably
adequate if there are not too many such items.

Although our tools were designed to work with troff, it is straightforward to adapt
them to other document production systems, such as TEX. The first part of the job is to
produce an analog of the .ix macro to emit index terms and page numbers. For
example, \index{term} in LATEX is essentially identical to our .ix macro. doclean

h

10 J. L. BENTLEY AND B. W. KERNIGHAN

must be modified to sweep up any loose ends, and format changed to produce output of
the right form; the rest of the pipe is unchanged. The resulting output is incorporated into
the document by a mechanism like index.head.

We also use the .ix macro to generate text and page numbers for tables of contents.
A macro for producing section headings, for instance, might be augmented to produce
lines of the form:

.ix CONTENTS Section Number Section Title

A subsequent program separates table-of-contents items from index terms and prepares
them in a format suitable for troff. (This is why doclean filters out lines that contain
the string ‘CONTENTS’.)

As a final observation, indexing is often done late in the game, under intense time
pressure. In such circumstances, there is no disgrace in using a text editor (as a last
resort) to fix up things that just don’t work correctly.

COMMENTS ON PROGRAMMING STYLE

This is the third version of a family of indexing programs started more than a decade ago.
The first and second versions used a pipeline of C programs, and increasingly
complicated sed scripts and sort options, in a largely unsuccessful attempt to control
sorting order; they are sketched in the index of Kernighan and Plauger[4]. As
capabilities were added over the years, the programs degraded into write-only code,
comprehensible only with substantial effort.

Our motivation for building the current set of awk programs was to prepare the index
to Bentley’s book[5]. This index was substantially different from those processed by the
existing programs: it had no font changes (which had contributed greatly to the
complexity of the C programs), but it did employ other niceties, such as ranges of pages
and breaks between letters. Rather than modifying the existing suite, we spent a few
hours building a single-shot awk pipeline for the task (37 lines of awk in 6 programs).

Several months later we built the current version, which is a functional superset of its
two predecessors. We worked with a colleague who was preparing the index to a
manual, and to whom we had described the prototype. We wrote the new code,
debugged it, added several necessary features, and provided initial documentation, all
within a week. The code presented here is a modest improvement on that. (There is also
a short version in Reference [3].) The final version of the C program, the initial awk
program, the textbook awk program and the final awk program are summarized in Table
1.

Table 1 has been massaged to compare incomparables. The C version, for instance,
did not have separate programs for deroman and reroman; it performed those tasks in
its sed-script versions of gen.key and format, so we redistributed the line counts.
The C version did not support ranges, which were entered explicitly by the user in the
first awk system, so neither prototype had the three programs that compute ranges. The
prototype awk programs performed no font changes, but were careful with roman
numerals.

The final awk suite is six times longer than the prototype, due to improvements in
several important dimensions.

h

TOOLS FOR PRINTING INDEXES 11

Table 1. Lines of source code
ii

C AWK AWK AWK

PROGRAM PROTOTYPE PROTOTYPE TEXTBOOK PRODUCTIONii
doclean 3 sed 11
deroman 7 sed 7 17
range.prep 9
range.sort 1 sh 4 sh 4 sh
range.collapse 10 23
reroman 4 sed 10 22
num.collapse 49 C 4 12
rotate 60 C 6 8 16
gen.key 18 sed 9 39
final.sort 1 sh 1 sh 1 sh 4 sh
format 30 sed 10 7 47ii

Total Lines 172 37 36 204.SP .3ii

Functionality: The programs support computed ranges, font changes, and
several other additions.
Error-checking: An error message is produced when a range was started but
not ended, for instance.
Bomb-proofing: Sanity is maintained for a wide class of invalid inputs, such
as huge roman numerals.
Performance: Improvements, ranging from more sophisticated algorithms to awk
by an order of magnitude.
Readability: Although this may strain the imagination of some readers, the
first version was much less readable than the code presented in the appendix. (Fifty
of the 200 lines are comments.)

These issues were not important in a single-shot prototype, but do matter in a production
program. Improving the C prototype might well also increase its length by a factor of
six.

The essence of the final suite is a long pipeline of short awk programs. Is that a good
approach? A pipeline proved to be an effective decomposition for this task: each
program follows the pipe philosophy of performing one task well, and is only slightly
muddled by the format of its input and output. We are familiar with two monolithic
programs for producing indices. One is for its author’s personal use for troff books; it is
350 lines of prototype-quality C and makes use of several system utilities. The other is
the TEX indexer described by Chen and Harrison[6]. It is a single program, implemented
in 7800 lines of C. The program handles a wide variety of indexing options, such as
hierarchical terms, see references, page ranges, and bold page numbers. If our suite of
programs handles 90 percent of the indexing job, then their program handles 99 percent.
The next 9 percent cost a factor of almost 40 in code size. If one desires an option in the
remaining 1 percent not covered by Chen and Harrison’s system, it might be easier to
modify something smaller.

Fragmenting the job into a large number of small pieces makes it easy to add or
change pieces; this seems especially important for indexing, where there is a wide variety
of styles. It also leaves open the possibility of recoding some critical part for speed. (For

h

12 J. L. BENTLEY AND B. W. KERNIGHAN

a discussion of decomposition strategies applied to making a KWIC index, a simpler
problem, see [7].)

The awk language is better suited than C to the combination of string handling, pattern
matching and arithmetic. There is an order-of-magnitude difference between lines of C
code and lines of awk code for the prototype versions of num.collapse and rotate;
this ratio appears to be typical for tasks of this nature. The shorter awk version is also
much closer to being correct. As the authors can attest from personal experience,
however, any automatic process can create insidious errors if its output is accepted
blindly.

Performance does suffer in the awk version. The index to Reference [3] (1015 index
terms) takes 11 seconds with the old C version and 23 seconds with the new one on a
VAX-8550. A similar ratio holds for other indices. This factor of two seems acceptable,
however, for a program that is run only occasionally and is fast enough for most users.

ACKNOWLEDGMENTS

We are grateful to Al Aho, Ted Kowalski, Doug McIlroy, Ravi Sethi, Chris Van Wyk,
Pamela Zave, and anonymous referees for comments on this paper. Pamela Zave also
gave us much help with shaking down the current program. Ravi Sethi provided the .ix
macro in the appendix.

REFERENCES

1. Words into Type, Prentice-Hall, 1974.
2. Leslie Lamport, LATEX: A Document Preparation System, Addison-Wesley, 1986.
3. Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger, The AWK Programming

Language, Addison-Wesley, 1988.
4. Brian W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.
5. Jon L. Bentley, Programming Pearls, Addison-Wesley, 1986.
6. Pehong Chen and Michael A. Harrison, ‘Issues in Index Preparation and Processing’,

Unpublished Manuscript, University of California, Berkeley (1987).
7. David L. Parnas, ‘On the criteria to be used in decomposing systems into modules’,

Communications of the ACM, 15 (12), 1053 –1058 (1972).

h

TOOLS FOR PRINTING INDEXES 13

APPENDIX: THE PROGRAMS

This appendix lists the programs verbatim in the order in which they are used. The
programs are available in machine-readable form by sending the mail message:

send indexing.tools from typesetting

to either <netlib@anl-mcs.arpa> or <research!netlib>.

ix.macro:
.de ix
.ie ’\\n(.z’’ .tm ix: \\$1 \\$2 \\$3 \\$4 \\$5 \\$6 \\$7 \\$8 \\$9 \\n%
.el \\!.ix \\$1 \\$2 \\$3 \\$4 \\$5 \\$6 \\$7 \\$8 \\$9
..

index.head:
.\" This version is for the -ms macro package
.pn 999 \" page number for first page
.de XX \" this macro precedes each index term
.br \" break
.ti -.2i \" outdent first line of each entry
.ne 2 \" need two lines for typical entry
..
.de YY \" header between letters of the alphabet
.sp 1.5 \" space 1.5 lines
.ne 3 \" need 3 lines on this page
.ce \" center next output line
- \\$1 - \" print the letter
.sp .5 \" space .5 line
..
.SH \" provide heading
Index
.LP \" text is coming
.nr PS 8 \" index looks better in small type
.nr VS 9 \" and small spacing
.MC 1.9i \" 3 columns with default-size page
.na \" no-adjust gives ragged right lines
.in .2i \" outdent first line by 0.2 inches
.hy 0 \" don’t hyphenate

make.index:
make.index: prepare an index from $*
doclean $* >foo0
deroman foo0 >foo1
range.prep foo1 >foo2
range.sort foo2 >foo3
range.collapse foo3 >foo4
reroman foo4 >foo5
num.collapse foo5 >foo6
rotate foo6 >foo7
gen.key foo7 >foo8
final.sort foo8 >foo9
format foo9

rm foo[0-9] # comment out for debugging

doclean:
awk ’ # doclean
Input: string (blanks and tab) number
Output: string (tab) number
BEGIN { FS = OFS = "\t" }
$0 !˜ /ˆix: / { print "doclean: non index line: " $0 | "cat 1>&2"; next }
/CONTENTS/ { next } # some people use .ix to make a table of contents

{ sub(/ˆix: /, "", $1) # rm leading "ix: "
sub(/ +$/, "", $1) # rm trailing blanks
print

}
’ $*

Piping the output of a print statement through cat 1>&2 is an awk idiom for sending output to the
standard error.

h

14 J. L. BENTLEY AND B. W. KERNIGHAN

deroman:
awk ’ # deroman
Input: string (tab) [arab or roman]
Output: string (tab) [arab]
Roman numeral n is replaced by arab n-1000 (e.g., iii -> -997)
BEGIN { FS = OFS = "\t"

set a["i"] = 1, a["ii"] = 2, ...
s = "i ii iii iv v vi vii viii ix x"
s = s " xi xii xiii xiv xv xvi xvii xviii xix xx"
s = s " xxi xxii xxiii xxiv xxv xxvi xxvii xxviii xxix xxx"
n = split(s, b, " ")
for (i = 1; i <= n; i++) a[b[i]] = i

}
$2˜/ˆ[ivxlc]+$/ { if ($2 in a) $2 = -1000 + a[$2]

else print "deroman: bad number: " $0 | "cat 1>&2"
}
{ print }

’ $*

This program uses awk’s strings and split command to initialize the array a; this idiom occurs in several
later programs.

range.prep:
awk ’ # range.prep
Input: [istart/iend] string (tab) number
Output: string (tab) [b/e] (tab) number
BEGIN { FS = OFS = "\t" }

{ f2 = "" }
$1 ˜ /ˆ%begin/ { f2 = "b"; sub(/ˆ%begin */, "", $1) }
$1 ˜ /ˆ%end/ { f2 = "e"; sub(/ˆ%end */, "", $1) }

{ print $1, f2, $2 }
’ $*

range.sort:
range.sort
Input/Output: string (tab) [b/e] (tab) number
Sort by $1 (string), $3 (number), then $2 (string)
sort ’-t ’ +0 -1 +2n +1 -2 $*

range.collapse:
awk ’ # range.collapse
Input: string (tab) [b/e] (tab) number
Output: string (tab) num [(space) num]
function error(s) {

print "range.collapse: " s " near pp " rlo "-" rhi | "cat 1>&2"
}
function printoldrange() {

if (range == 1) { error("no %end for " term); rhi = "XXX" }
if (NR > 1) print term, (rlo == rhi) ? rlo : (rlo " " rhi)
rlo = rhi = $3 # bounds of current range

}

BEGIN { FS = OFS = "\t" }
$1 != term { printoldrange(); term = $1; range = 0 }
$2 == "e" { if (range == 1) { range = 0; rhi = $3 }

else { printoldrange(); error("no %begin for " term);
rlo = "XXX"

}
next

}
$3 <= rhi + 1 { rhi = $3}
$3 > rhi + 1 { if (range == 0) printoldrange() }
$2 == "b" { if (range == 1) error("multiple %begin for " term); range = 1 }
END { if (NR == 1) NR = 2; printoldrange() }
’ $*

This is the most subtle program; much of the complexity is a result of error checking. The simplified version
shown below as range.col.mini removes the error checking.

h

TOOLS FOR PRINTING INDEXES 15

range.col.mini:
awk ’ # range.col.mini -- range.collapse with no error checking
function printoldrange() { # print existing range then initialize new range

if (NR > 1) print term, (rlo == rhi) ? rlo : (rlo " " rhi)
rlo = rhi = $3 # bounds of current range

}
BEGIN { FS = OFS = "\t" }
$1 != term { printoldrange(); term = $1; range = 0 } # new term
$2 == "e" { range = 0; rhi = $3; next } # end of range
$3 <= rhi + 1 { rhi = $3 } # continue existing

range
$3 > rhi + 1 { if (range == 0) printoldrange() } # if explicit, print

last range
$2 == "b" { range = 1 } # now in explicit

range
END { if (NR == 1) NR = 2; printoldrange() } # print existing

range
’ $* # even on 1-line

file

This program is not used by the indexing program, but it might help you understand range.collapse.

reroman:
awk ’ # reroman
Input: string (tab) arab1 [(space) arab2]
Output: string (tab) roman1 [-roman2]
BEGIN { FS = OFS = "\t"

set a[1] = "i", a[2] = "ii", ...
s = "i ii iii iv v vi vii viii ix x"
s = s " xi xii xiii xiv xv xvi xvii xviii xix xx"
s = s " xxi xxii xxiii xxiv xxv xxvi xxvii xxviii xxix xxx"
split(s, a, " ")

}
$2 < 0 { n = split($2, b, " ")

for (i = 1; i <= n; i++) {
if (b[i] >= 0) continue
j = 1000 + b[i]
if (j in a) b[i] = a[j]
else print "reroman: bad number: " $0 | "cat 1>&2"

}
$2 = b[1]
if (n > 1) $2= b[1] " " b[2]

}
{ sub(/ /, "-", $2); print }

’ $*

num.collapse:
awk ’ # num.collapse
Input: string (tab) roman1 [-roman2]
Output: string (tab) numlist
BEGIN { FS = OFS = "\t" }
$1 != p { p = $1

if (NR > 1) printf "\n"
printf "%s\t%s", $1, $2
next

}
{ printf " %s", $2 }

END { if (NR > 0) printf "\n" }
’ $*

The variable p is the previous value. The output uses space as a separator between numbers in the list.

h

16 J. L. BENTLEY AND B. W. KERNIGHAN

rotate:
awk ’ # rotate
Input: string [%key sort key] (tab) numlist
Output: several rotations of string (tab) [key] (tab) numlist
BEGIN { FS = OFS = "\t" }
/ %key / { i = index($1, " %key ")

print substr($1, 1, i-1), substr($1, i+6), $2
next

}
{ print $1, "", $2

i = 1
while ((j = index(substr($1, i+1), " ")) > 0) {

i += j
printf("%s, %s\t\t%s\n",substr($1,i+1),substr($1,1,i-1),$2)

}
}

’ $*

The tricky code in the while loop makes quite a difference in run time.

gen.key:
awk ’ # gen.key
Input: string (tab) [opt explicit key] (tab) numlist
Output: sort key (tab) string (tab) numlist
BEGIN { FS = OFS = "\t" }
$2 == "" { # generate key if none specified

$2 = $1
Remove these troff commands:
gsub(/\\f\(..|\\f.|\\s[+-][0-9]|\\s[0-9][0-9]?/, "", $2)
Def 1: keep blanks, letters, digits only
gsub(/[ˆa-zA-Z0-9]+/, "", $2)
Def 2: remove index commands []{}, and % before literals
atsign = 0
if ($2 ˜ /%/) { # hide literals in @

atsign = 1
gsub(/%%/, "@@0@@", $2)
gsub(/%\[/, "@@1@@", $2)
gsub(/%\]/, "@@2@@", $2)
gsub(/%\{/, "@@3@@", $2)
gsub(/%\}/, "@@4@@", $2)
gsub(/%˜/, "@@5@@", $2)

}
gsub(/%e/, "\\", $2)
gsub(/˜/, " ", $2)
gsub(/[%\[\]\{\}]/, "", $2) # remove font-changing []{} and %, ˜
if (atsign) { # replace literals

gsub(/@@0@@/, "%", $2)
gsub(/@@1@@/, "[", $2)
gsub(/@@2@@/, "]", $2)
gsub(/@@3@@/, "{", $2)
gsub(/@@4@@/, "}", $2)
gsub(/@@5@@/, "˜", $2)

}
if ($2 ˜ /ˆ[ˆa-zA-Z]/) { # force punctuation before a

if ($2 ˜ /ˆ[0-9]/) $2 = " " $2
else $2 = " " $2

}
}

{ print $2, $1, $3 }
’ $*

Under Definition 1, the sort key consists of all alphanumeric characters in the string and this definition is
commented out. Definition 2 is active; it tries to remove formatting commands.

final.sort:
final.sort
Input/Output: sort key (tab) string (tab) numlist
Sort by $1 (string)
sort -f $*

The -f option folds upper and lower case together in comparisons.

h

TOOLS FOR PRINTING INDEXES 17

format:
awk ’ # format
Input: sort key (tab) string (tab) numlist
Output: troff format, commands interpreted
BEGIN { FS = "\t"

s = "ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz "
set upper["a"] = "A"
for (i = 1; i <= 27; i++) upper[substr(s,i+27,1)] = substr(s,i,1)
set lower["a"] = lower["A"] ="a"
for (i = 1; i <= 27; i++) {

lower[substr(s,i,1)] = substr(s,i+27,1)
lower[substr(s,i+27,1)] = substr(s,i+27,1)

}
}
{ # mark change between letters with .YY

this = substr($1,1,1)
if (!(this in lower)) lower[this] = " "
this = lower[this]
if (this != last && this != " ")

print ".YY", this, upper[last=this]
gsub(/ /, ", ", $3) # commas between page numbers
atsign = 0
if ($2 ˜ /%/) {

atsign = 1
gsub(/%%/, "@@0@@", $2)
gsub(/%\[/, "@@1@@", $2)
gsub(/%\]/, "@@2@@", $2)
gsub(/%\{/, "@@3@@", $2)
gsub(/%\}/, "@@4@@", $2)
gsub(/%˜/, "@@5@@", $2)

}
gsub(/%e/, "\\e", $2) # %e -> \e
gsub(/˜/, " ", $2) # tildes go away at last
if (gsub(/\[/, "\\\\&\\f(CW", $2))

gsub(/\]/, "\\fP", $2)
if (gsub(/\{/, "\\f2", $2))

gsub(/\}/, "\\fP", $2)
if (atsign) {

gsub(/%/, "", $2)
gsub(/@@0@@/, "%", $2)
gsub(/@@1@@/, "[", $2)
gsub(/@@2@@/, "]", $2)
gsub(/@@3@@/, "{", $2)
gsub(/@@4@@/, "}", $2)
gsub(/@@5@@/, "˜", $2)

}
print ".XX"; printf "\\&%s %s\n", $2, $3

}
’ $*

There is no good way to convert cases in awk .

	SUMMARY
	MAKING AN INDEX
	DESIGN CONSIDERATIONS
	IMPLEMENTATION
	BELLS AND WHISTLES
	COMMENTS ON PROGRAMMING STYLE
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX: THE PROGRAMS

